Discipline: Engineering (Track & Civil) Category: Standard

Maintenance of Crossings
ETM-03-03

Applicability

| New South Wales | ✔ | CRIA (NSW CRN) |

Primary Source

ARTC Standard TMP 05, LMP 01, LMP 02

Document Status

<table>
<thead>
<tr>
<th>Version</th>
<th>Date Reviewed</th>
<th>Prepared by</th>
<th>Reviewed by</th>
<th>Endorsed</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>18 Jun 10</td>
<td>Standards</td>
<td>Manager Standards</td>
<td>Exec Manager SS&P 21/06/2010</td>
<td>CEO</td>
</tr>
</tbody>
</table>

Amendment Record

<table>
<thead>
<tr>
<th>Version</th>
<th>Date Reviewed</th>
<th>Clause</th>
<th>Description of Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>01 Dec 09</td>
<td></td>
<td>Implementation draft. Supersedes NSW Standards TMP 05 v1.1, LMP 01 v1.1 and LMP 02 v1.1</td>
</tr>
<tr>
<td>1.1</td>
<td>18 Jun 10</td>
<td></td>
<td>Banner added regarding mandatory requirements in other documents and alternative interpretations.</td>
</tr>
</tbody>
</table>
Contents

1 Purpose .. 3

2 Manual Grinding of Crossings ... 3
 2.1 Aim of Manual Grinding .. 3
 2.2 Planning Manual Grinding ... 3
 2.3 Inspection Strategies ... 3
 2.4 Grinding Requirements .. 4
 2.5 Allowable Extent of Wear .. 4

3 Fabricated Crossings and Wing Rails .. 4
 3.1 Preparation for Weld Repairs .. 4
 3.2 Oxy-Acetylene Resurfacing of Fabricated Crossings and Wing Rails 5
 3.2.1 Welding Rods ... 5
 3.2.2 Copper Bonds ... 5
 3.2.3 Hardness .. 6
 3.2.4 Speed of Traffic over the Worksite .. 6
 3.3 Electric Arc Welding of Fabricated Crossings and Wing Rails 6

4 Inspection and Repair of Manganese Crossings ... 6
 4.1 Inspection .. 6
 4.2 Limits of Defects .. 6
 4.3 Preparation .. 7
 4.4 Weld Repair Procedures .. 7

5 Inspection and Testing of Finished Weld .. 7

6 Field Marking of Crossings .. 7
 6.1 Process ... 7
 6.2 Marking Details .. 8
1 Purpose
This specification sets out some requirements for the maintenance of crossings.
Wire feed welding of rails and crossings is covered in RTS 3733.

2 Manual Grinding of Crossings

2.1 Aim of Manual Grinding
Manual grinding of crossings should be undertaken to prevent short term failure and to extend
the life of the crossing.
The primary objective is to remove the lip which develops on the nose of the crossing and to a
lesser extent the wingrail. The aim is not to introduce a special profile to the head of the rail but
rather to correct an anomaly which if left untreated can damage the crossing running surface.
The profile of the nose or wing rail is nominally self-correcting under the wheel loads. The flow
is caused by the higher stresses due to more concentrated wheel rail contact (which occurs until
the profile has worn) and on some types of crossings because the hardness is low prior to work
hardening in service.

2.2 Planning Manual Grinding
Manual grinding should be undertaken when the lip on the nose reaches 1mm however grinding
may be undertaken whenever flow is evident. Grinding is also required:
• during the wearing in period of new crossings when more than one grinding cycle may be
 required;
• in the wearing in period after build up or repair of a crossing;
• as part of the normal wear of crossings in some cases although normally over a longer time
 scale;
• should damage occur due to high impact or to restore unusual wear or badly worn profiles.
 This would normally be carried out in association with building up.

2.3 Inspection Strategies
The recommended inspection strategies are shown in Table 1. Where special problems are
evident inspection frequencies should be increased.

<table>
<thead>
<tr>
<th>Traffic Density</th>
<th>Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>After Installation</td>
<td>From Repair</td>
</tr>
<tr>
<td>lines up to 15 MGT</td>
<td>inspect each month until</td>
</tr>
<tr>
<td></td>
<td>first grind thence each</td>
</tr>
<tr>
<td></td>
<td>three months for 6</td>
</tr>
<tr>
<td></td>
<td>months.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>lines over 15 MGT</td>
<td>inspect each two weeks</td>
</tr>
<tr>
<td></td>
<td>until first grind thence</td>
</tr>
<tr>
<td></td>
<td>each two months for 12</td>
</tr>
<tr>
<td></td>
<td>months</td>
</tr>
</tbody>
</table>

Table 1
2.4 Grinding Requirements

The anticipated grinding requirements for various crossing types are shown in Table 2.

<table>
<thead>
<tr>
<th>Crossing Type</th>
<th>Period in MGT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After Installation</td>
</tr>
<tr>
<td>Fabricated</td>
<td>2</td>
</tr>
<tr>
<td>Welded</td>
<td>2</td>
</tr>
<tr>
<td>Built Up (special alloy)</td>
<td>4</td>
</tr>
<tr>
<td>Manganese</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2

2.5 Allowable Extent of Wear

The extent of wear is to be measured by placing a 2000mm straight edge across the worn area as shown in Figure 1 and measuring from the underside of the straight edge.

Building up should be undertaken when the wear has reached 3 - 4mm as this will increase the crossing life, as the weld metal has a wear resisting quality superior to the parent rail. Building up however can be undertaken with up to 6mm of wear.

3 Fabricated Crossings and Wing Rails

3.1 Preparation for Weld Repairs

The following preparation is required prior to commencement of resurfacing

- Tightening of all bolts in crossing;
- Lifting and packing of supporting bearers;
- Test for the presence of cracks, with dye penetrant or magnetic particle tests;
- Remove any defects found by oxy-propane gouging and grinding;
- Preheating to a minimum of 350°, or for head hardened rail in the range 350° to 450°C, with soaking time a minimum of 15 minutes, covering the weld repair plus 100 - 150mm on either side of the repair;
3.2 Oxy-Acetylene Resurfacing of Fabricated Crossings and Wing Rails

3.2.1 Welding Rods

Only wear resistant alloy steel welding rods 5mm and 6mm diameter are to be used for building up. These are colour coded "signal red" on the tip of each rod.

3.2.2 Copper Bonds

Weld metal must not be deposited within 25mm of the copper bond position (See Figure 7) on rails to which copper bonds are, or have been, attached. This restriction is necessary to eliminate the possibility of copper penetrating into the rail whilst welding is in progress.

Figure 1

Figure 7 - Welding near Bonds
3.2.3 **Hardness**

The weld metal deposited will give a Brinell hardness of approx. 300 as compared to normal rail with a hardness of approx. 250. Similarly to the running surface of the existing rail there will be an increase in hardness in the built up area of 20-30 points in service due to work hardening.

The weld metal is dense, with good ductility and toughness and will react favourably under hot hammering and forging thus ensuring a sound, dense, close grained deposit. This also enables the correct contour to be obtained without the need for excessive grinding.

3.2.4 **Speed of Traffic over the Worksite**

The maximum speed of traffic passing over crossings in the process of being built up is 15 kph.

3.3 **Electric Arc Welding of Fabricated Crossings and Wing Rails**

Prequalified welding consumables shall be those given in the table below as specified in AS/NZS 2576:

<table>
<thead>
<tr>
<th>Shielded metal arc welding</th>
<th>Self-shielded flux-cored metal arc welding</th>
<th>Gas shielded metal arc welding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1130-A1</td>
<td>1130-B7</td>
<td>1130-B5, B6</td>
</tr>
<tr>
<td>1430-A1</td>
<td>1430-B7</td>
<td>1430-B5, B6</td>
</tr>
</tbody>
</table>

Weld beads should be made primarily in the longitudinal direction;

Arc strike shall not be permitted outside the preheated weld area;

4 **Inspection and Repair of Manganese Crossings**

4.1 **Inspection**

Ultrasonic inspection is not applicable to cast manganese steel due to its internal grain structure;

Magnetic particle inspection is not applicable as the material is not magnetic.

The inspection of cast crossings is normally by visual observation. This may be supplemented by dye penetrant inspection to provide additional information on the extent of cracks.

4.2 **Limits of Defects**

Crossings or cast manganese components are to be replaced when cracking exceeds the following limits:

<table>
<thead>
<tr>
<th>Length</th>
<th>100mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth of transverse crack in rail head</td>
<td>Half the depth of the head thickness</td>
</tr>
<tr>
<td>Depth of transverse crack in wing</td>
<td>Half the depth of the wing profile height</td>
</tr>
<tr>
<td>Bolt hole crack</td>
<td>Crack extending from bolt hole into the head or flange of the crossing</td>
</tr>
</tbody>
</table>
4.3 Preparation
Before any repair welding, preparation must include:
- Grinding of defect to sound metal;
- Grinding of adjacent work hardened metal to a depth of 0.5mm;
- Grinding of adjacent metal outside the work hardened area to 0.2mm to 0.3mm deep;
- Avoid raising of metal temperature during the grinding process too high (the metal should not turn bluish);
- Limit grinding depth to a maximum of 15mm;
- After grinding undertake dye penetrant testing for 20mm on adjoining areas (only use to a maximum of 45°C).

4.4 Weld Repair Procedures
- The material must be kept below 204°C at all times - regularly check temperatures, fill flangeways with water to within 6mm of the weld area;
- Welding beads are to be made in narrow longitudinal passes, with no weaving;
- Each bead should overlap the previous one by about 1/3rd of its length;
- Rutile covered electrodes are to be used;
- Welding consumables are to conform to the requirements of AS/NZS 2576 for austenitic manganese steel;
- After the welding of each bead it shall be cleaned of all slag by use of pneumatic or electric needle gun prior to commencing the weld repair of the next zone.

5 Inspection and Testing of Finished Weld
Inspection and testing of finished welds following grinding shall be carried out to ensure the weld satisfies the following criteria:
- Visual Inspection - the weld shall show no regions of underfill, cracking, inclusions, lack of fusion, gas porosity, slag inclusions, grinding burn, electric contact burns;
- Undertake dye penetrant or magnetic particle testing, and remove any defects found;
- Confirm that levels and alignment are to standard;
- Arrange ultrasonic testing of the weld as specified in Technical Maintenance Plans.

6 Field Marking of Crossings
6.1 Process
This section sets out the requirements necessary to identify the life of a crossing by indicating either the date it was installed or repaired.
Welders are required to indicate on 'V' and 'K' Crossings when the crossings have been installed or repaired. The markings are to be placed on the wing rails (see sketch) and are to include the following information:
- Whether installed or repaired;
- Date of installation or repair;
- Welder's initials.
6.2 Marking Details

I for installation plus installation date and initials; or
R for repair plus repair date and initials.