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1 Introduction 

1.1 Purpose 

The purpose of this guideline is to provide general recommendations for effective Structural 

Health Monitoring (SHM) of bridges to ensure that:  

• Fit-for-purpose SHM plans are well investigated, analysed, and outlined before 

implementation to achieve tangible and cost and time-effective results.   

• State-of-the-art developments are reviewed and incorporated into the SHM plans to 

enhance effectiveness, reduce processing time, cost, and future human contributions, 

as well as increase bridge safety throughout the bridge lifecycle.       

1.2 Scope 

This guideline includes recommendations for the implementation of state-of-the-art, and cost and 

time-effective SHM plans throughout the bridge lifecycle.   

1.3 Document Owner  

The Head of Engineering Standards is the Document Owner. Queries should be directed to 

standards@artc.com.au in the first instance. 

1.4 Definitions 

The following terms and acronyms are used within this document: 

 

Term or acronym Description 

AI Artificial Intelligence  

ARMA  Autoregression Moving Average   

BIM Building Information Modelling  

BMS Bridge Management System 

BWIM Bridge Weigh In Motion 

CWT Continuous Wavelet Transform  

DAF Dynamic Amplification Factor 

DLA Dynamic Load Allowance  

DoF Degree of Freedom  

DSF Damage Sensitive Feature 

DT Digital Twin 

DWT Discrete Wavelet Transform 

EFDD  Enhanced Frequency Domain Decomposition 

FDD Frequency Domain Decomposition  

FE Finite Element 

FEA Finite Element Analysis  

FFT Fast Fourier Transform  

mailto:standards@artc.com.au
https://www.sciencedirect.com/topics/engineering/building-information-modeling
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Term or acronym Description 

FRF  Frequency Response Function 

GNSS  Global Navigation Satellite System 

GPS Global Positioning System  

GWN Gaussian White Noise  

IoT Internet of Things  

IRF Impulse Response Function 

LiDAR  Light Detection And Ranging 

LVDT Linear Variable Differential Transformer  

MAC  Modal Assurance Criterion 

NExT  Natural Excitation Technique 

PP Peak Picking 

PSD  Power Spectral Density 

RSI Rail Structure Interaction  

SAR Synthetic Aperture Radar 

SHM Structural Health Monitoring 

SLS Serviceability Limit State 

SM Structural Monitoring 

SNR Signal to Noise Ratio 

SSI  Stochastic Subspace Identification 

Soil Structure Interaction  

SVD Singular Value Decomposition 

TPD Truck performance Detector 

UAV  Unmanned Aerial Vehicle 

WSN Wireless Sensor Network  
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2 Structural Monitoring versus Structural Health Monitoring  

2.1 General  

While Structural Monitoring (SM) can be conducted to monitor a structural member under loading 

and acquire field data, Structural Health Monitoring (SHM) can be defined as the comprehensive 

process of acquiring and analysing data from sensing equipment to evaluate the health state of 

the structure. An effective SHM cannot be fulfilled without understanding structural performance 

and behavior under various static and dynamic load cases in all phases (numerical, experimental, 

or practical levels) or without extracting and analysing sensitive health or anomaly patterns to 

enable detecting health/undamaged states against damaged ones.  

Generally, the SHM process is implemented in five key steps, of which only the first three steps 

can be applied to an SM:  

• Data acquisition 

• System Identification 

• Condition monitoring and safety assessment  

• Damage detection, localisation, and qualification   

• Decision-making [1] 

Before commencing an SM or an SHM process, the aim of such a process needs to be well-

defined and purpose-driven so that the involvement of further detailed investigation and 

understanding of the performance and behavior of critical structural elements using sensors is 

justifiable. 

In general, the SM or SHM process is more important for tracking the health state of existing old 

bridges in their as-is condition or when they are very close to a site where new construction 

occurs than for tracking the performance or behavior of newly constructed bridges. The 

increasing volume of vehicle tonnage and cycles over existing old bridges or constructing new 

structures adjacent to older bridges can cause sudden structural damage or even catastrophic 

failure of these bridges, as these bridges may not have been constructed with significantly higher 

design capacity or required structural redundancy nor be in perfect structural condition.   

A successful SHM can supplement the effectiveness of: 

• Structural modelling and numerical analysis that may be compromised or conservatively 

simplified. In this case, the lack of accuracy in numerical analysis may lead to unrealistic 

low-calculated load rating factors or high-calculated stresses (fatigue) in critical 

structural members. If no SHM or SM is considered, any decision might have costly or 

adverse consequences on network efficiency or the business, e.g., it might result in 

bridge, lane, or track closure, barricade installation, speed and mass restriction, or an 

incorrect estimation of the remaining fatigue life.   

• Physical inspections that may be compromised by limited human resources, delayed 

discovery of damages, a lack of knowledge, and the subjectivity of inspectors [2].  

• Performance or condition tracking of safety-critical, heritage, or significant bridges that 

are not likely to be replaced or have a high economic impact on the business. 

• Performance or condition tracking of bridges located in strategic regions that have 

higher importance levels or a higher annual probability of exceedance that are mostly 
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susceptible to natural disasters, e.g., earthquakes, winds, or flooding, and require an 

immediate recovery after such an event. 

• Verification and validation of an actual load case or effect applied to existing lower-

capacity bridges that causes a significant cost in bridge upgrading or strengthening in 

case these bridges need to comply with the current bridge design codes. 

Carbon dioxide emissions can significantly be reduced as a result of bridge maintenance without 

the need for bridge reconstruction or new bridge construction [3, 4] once older bridges' behavior 

is monitored, and their end-of-service life estimated more realistically. 

The use of SHM of bridges includes below but is not limited to:  

• Strain, displacement, and temperature data acquisition. 

• Force estimation for verifying and validating designs, assessments, and safety and 

regulatory compliance requirements.  

• Modal parameter identification (acceleration responses). 

• Bridge condition monitoring and safety assessment.   

• Damage or anomaly detection, localisation, and qualification.    

• Numerical modelling or Finite Element (FE) model validation and updating. 

• Data-driven SHM, and machine and deep learning techniques [1]. 

Areas of expertise involved in an effective SHM process include but may not be limited to: 

• Bridge engineers, especially those with a proven track record in structural dynamics, 

practical bridge design, Finite Element Analysis (FEA), and signal processing 

• Experts in numeric computing and/or programming language platforms 

• Artificial Intelligence (AI) specialists 

• Structural inspection and maintenance specialists 

• Project managers 

• Data integration and management specialists  

• Contractors, providers of sensing services, or SHM specialist technicians 

2.2 Sensors for SHM 

SHM needs to collect accurate real-time data from structural members and transmit this 

information to the control system while it should signal necessary warnings with anomaly 

conditions.  

The latest advances in sensing technology for SHM have resulted in various types of sensors 

which are divided into two categories:   

• Contact sensor types  

• Noncontact sensor and remote sensing types   
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2.2.1 Contact Sensor Types 

Table 1 below lists some of the most common contact sensors used in bridge monitoring [5]: 

Table 1: Common Sensor Types 

Physical quantity Sensor 

Strain  Conventional and embedded strain transducer 

 Optical strain gauge 

 Vibrating wire  

Displacement Linear Variable Differential Transformer (LVDT) 

 Long gauge fibre optics 

 Optical e.g., Fiber Bragg grating 

 Laser vibrometer 

Temperature Electrical resistance thermometer  

 Thermocouple  

 Thermistor  

 Fibre optic-based sensor 

Acceleration Piezoelectric accelerometer 

 Capacitive accelerometer  

 Force-balanced accelerometer 

 Seismometer  

 MEMS 

Force Electrical resistance load cells 

 Piezoelectric load cells 

2.2.2 Noncontact Sensor and Remote Sensing Types  

In some situations, a significant number of measurement locations may be required as the bridge 

is more complex, or sometimes access to some of the locations is restricted. In these cases, 

noncontact sensors may be of high interest. A noncontact system can be remote sensing-based 

and is when a measurement is conducted with absolutely no contact or probing to a structural 

member. Noncontact systems are primarily based on laser, radar, vehicle, GPS, video 

technologies, and digital cameras [5].  

The SHM can provide remote condition monitoring by transmitting data to data analysis centres. 

The transmission using networking technologies, such as Wireless Sensor Networks (WSN)s 

allows the development of a cheaper continuous and autonomous measurement system for 

bridge SHM than a cable-based measurement system. WSN can perform independent activities, 

such as preliminary data processing of the acquired data, self-monitoring of supply energy and 

communication links, and scheduling of the measurements. However, the WSN nodes are 

battery-powered, and thus power management is vital to maximize their durability [6].  

In recent years, more effective remote sensing has been established as an innovative, effective, 

and cost-efficient option for the provision of high-quality information to decision-makers to update 

their plans and/or take actions toward the mitigation of the risks involved in bridges. In this 

context, many practical SHM for railway and road bridges have been developed based on: 
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• Global Navigation Satellite System (GNSS) 

• Synthetic Aperture Radar (SAR)  

• Light Detection And Ranging (LiDAR)  

• Unmanned Aerial Vehicle (UAV) [7]  

Thus far, many SHMs have successfully integrated remote sensing technologies with in place 

sensors (contact and/or noncontact) on Internet of Things (IoT) cloud platforms to obtain real 

bridge data (e.g., dynamic displacements or ambient acceleration responses). In some cases, the 

need to install heavy instrumentation and therefore the overall cost of SHM for complex bridges 

have been reported to be significantly reduced. The obtained information has been analysed by a 

computer decision support system to develop unique signatures of bridge conditions.  

Although rapid advances in noncontact, vision-based, or remote sensing equipment have made 

this sensing equipment a promising alternative to conventional contact sensors for data 

collection, it is necessary to fully investigate: 

• sensor accuracy,   

• required sampling rate,   

• field data magnitude range of interest, 

• natural frequency and resonant area and amplitude of interest, 

• involved time and cost in sensor(s) installation, implementation, data post-processing, 

and removal,  

• required expertise and ease of use of sensors at the bridge site, and 

• other potential environmental obstacles,  

before selecting a sensor to ensure the effectiveness of an SHM.   
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3 Data Acquisition  

Field testing on a temporary/quick or permanent/ongoing basis can be conducted to acquire data 

depending on the required SM or SHM purpose. These tests are undertaken to obtain information 

about structural responses to loads. During the field test, real-time data such as strain, 

displacement, temperature, acceleration, and velocity responses of the structure under static or 

dynamic loads can be obtained.    

Figure 1 illustrates different types of field tests and bridge excitation methods based on the 

characterisation of the test. Depending on the SHM problem, one or a combination of these field 

tests can be used.   

 

 

Figure 1: Different types of field testing [5] 

 

It should be mentioned that along with sensor installation and field data acquisition, some tests 

may be conducted to obtain information about materials or specimens’ strength e.g., tensile, 

compressive, torsion, weld, bolt, fatigue, or creep, etc. These tests can provide good information 

when a SHM plan is designed for a specific bridge or structural member.      

3.1 Strain, Displacement, and Temperature  

Strain, displacement, and temperature data can be acquired from a field test in the time domain. 

Some applications of this data are as below:  

• Permanent monitoring or quick field test to collect strain or displacement data of a 

member (under ambient conditions). This may be used for force estimation in a design 

code to verify and validate its magnitude, fatigue life estimation, FE model updating 

(static stress, strain, or displacement), structural connections, constraints, and 

stiffnesses check, member’s elastic behavior, composite steel-concrete effects, or etc.  

• Ongoing environmental data acquisition to investigate e.g. relationship between 

temperature variations with displacements or strains in members during time. 

• Tracking structural members’ stress, strain, or displacement e.g., where new 

constructions occur adjacent to older bridges. 
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• Verification of restraints’ stiffnesses (boundary conditions) in a FE model 

• Investigation of elastic, elastoplastic, or plastic strain  

• Investigation of Rail Structure Interaction (RSI) 

• Pile test, monitoring, and Soil Structure Interaction (SSI) 

• Field verification of dynamic effects in the form of Dynamic Amplification Factors (DAF)s 

or Dynamic Load Allowances (DLA)s in Serviceability Limit State (SLS) by crossing a 

special vehicle or a group of known vehicles over a bridge at various speeds to further 

investigate vehicle-bridge interactions in e.g., an FE model updating problem.   

3.2 Modal Parameter Identification  

The basic principle of a modal parameter identification test is that any structural damage would 

result in changes in the multi Degree of Freedom (DoF) linear structural dynamic responses of a 

system.  

To track these changes, signal processing should be carried out to extract modal parameters 

from the acceleration responses of a member using modal parameter identification methods in 

frequency, time, or time and frequency domains (such as wavelets). Modal parameter 

identification is the study of a system’s dynamic nature that is defined independently of the loads 

(excitation) given to the system and the system’s response [5]. Some applications of this vibration 

data and modal test are as below:   

• Extraction of bridge’s natural frequencies and mode shapes immediately after a vehicle 

passes over a bridge or immediately after being excited by an impact hammer or an 

eccentric mass vibrator (applied only to small-size bridges or footbridges). The free 

vibration data can be processed to extract the system’s stiffness, mass, or damping 

ratios, and to validate numerical dynamic frequency or modal analysis.     

• Carrying out FE model updating (modal, harmonic, or transient dynamic analysis) using 

field acceleration responses from a special vehicle or vibrator.  

• Investigation of seismic or wind responses of bridges. 

• Vehicle bridge interaction in FE model updating problem.   

It should be noted that most practical damage or anomaly detection, and health decision-making 

SHMs obtain modal parameters at some stages to investigate the system’s behavior and 

performance under dynamic loading.    

3.2.1 Frequency-Domain Methods  

Frequency-domain methods have a broader spectrum of applications than time-domain methods 

in SHM.  

These input-output modal parameter identification tests can estimate the Frequency Response 

Functions (FRF)s or the corresponding Impulse Response Functions (IRF)s using a Fast Fourier 

Transform (FFT) method. The FRF is used to measure and characterize the dynamic behavior of 

a bridge structure. The FFT algorithm is also used to transfer the structure’s output response 

(such as strain, displacement, velocity, and acceleration) from the time domain to the frequency 

domain.  

It should be noted that real-time data is normally required to be transformed into a frequency 

domain for various SHM purposes.   
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Some of the most applicable frequency domain methods are listed in Table 2: 

Table 2: Some of the Frequency-Domain Methods [5] 

Method Application 

Peak Picking (PP)  
A simple and fast method to extract modal parameters i.e. 
peaks from the Power Spectral Density (PSD) computed 
over a time history. This method can be enhanced by the 
Singular Value Decomposition (SVD) of PSD for each DoF. 

Frequency Domain 

Decomposition (FDD) 

A simple algorithm that constructs output spectrum or half-
spectrum matrices from measured dynamic responses. This 
method decomposes modes that are closely spaced.  

Enhanced Frequency Domain 

Decomposition (EFDD)  

This method is an extension of the FDD method, and it can 
integrate damping and give a better estimation of both 
natural frequencies and mode shapes. 

3.2.2 Time-Domain Methods  

Time-domain methods rely on a single DoF to carry out calculations.  

The SVD of the output correlation matrix is used to extract the undamped mode forms concerning 

the sensor positions. The PP approach is then used to extract the natural frequencies and 

damping ratios from a single DoF signal, after the retrieval of the mode shapes.  

Some of the most applicable time-domain methods are listed in Table 3: 

Table 3: Some of the Time-Domain Methods [5] 

Method Application 

Natural Excitation Technique 

(NExT)  

A time-domain-based method that generates IRFs using 
cross-spectra of ambient vibration response rather than 
forced vibration test.  

Autoregression Moving 

Average (ARMA) 

A time-domain-based method that can forecast a time series 
of current values based on previous values and a prediction 
error. This method is an extended model of a linear time-
invariant system stimulated by white noise, with the 
measured response assumed to be stationary. 

Stochastic Subspace 

Identification (SSI)  

This method is a prominent method that is capable of 
estimating, a linear time-invariant state-space model from 
correlated sequences of observed data using 
conventional linear algebra techniques. 

3.2.3 Time and Frequency Domain Methods  

Time and frequency domain methods are signal processing methods that include both time and 

frequency data at the same time. These time and frequency domain methods include Wavelet 

transforms that can be classified into two broad classes:  

• Continuous Wavelet Transform (CWT)  

• Discrete Wavelet Transform (DWT)  

Wavelets are effective tools for analysing data over different scales by decomposing temporal 

signals into a summation of time-domain functions for measuring time‐frequency energies 

of spectral components [8]. Wavelets have been widely used to detect sudden damages to 

bridges such as those caused by earthquakes or winds.    

https://www.sciencedirect.com/topics/engineering/temporal-signal
https://www.sciencedirect.com/topics/engineering/temporal-signal
https://www.sciencedirect.com/topics/engineering/spectral-component


Structural Health Monitoring of Bridges 

ETG-09-04 

Model-Based Structural Safety Assessment 

This document is uncontrolled when printed. Version Number: 1.0 Date Reviewed: 05 Apr 24 Page 12 of 24 

 

4 Model-Based Structural Safety Assessment  

Figure 2 illustrates a model-based approach to adopt the structural safety levels for a bridge 

structure.  

To design effective safety levels of bridges, the first phase involves the development of an initial 

FE model from a bridge based on the available drawings and accurate site measurements. This 

stage is to ensure that there is a general understanding of members’ elastic behavior or critical 

members’ stresses or displacements under SLS load cases in ambient conditions with and 

without e.g., standard or field-verified DAFs or DLAs as well as the system’s stiffness and mass 

which shows itself in the bridge’s natural frequencies and mode shapes. FE modelling is essential 

for complex bridges to ensure the best locations are selected for sensing. This is very important 

because the number of available sensors may be limited in an SHM, or adding more sensors may 

cause increased cost, time, or complexity of installation, data post-processing, or analysis. 

Installation of sensors at insensitive locations will result in a misinterpretation of the bridge’s 

behavior or the ineffectiveness of SHM. Therefore, selecting insensitive locations for sensing can 

be as impractical as having no SHM plan. Normally, vibration responses of structures should be 

obtained from important locations to fully update or validate an FE model with field-testing data. In 

theory, if one could install an unlimited number of accelerometers, they would acquire a full shape 

of the bridge occurring at each mode of vibration. This vibration data helps validate the natural 

frequencies and mode shapes of a bridge for various SHM purposes. It would be impractical to 

install sensors or conduct field testing without an initial understanding of the expected system’s 

stiffness, or stress levels due to the various load cases. In the absence of as-built drawings or 

where structural members cannot fully be measured at the site (such as embedded concrete 

members with unknown reinforcement arrangements), permanent field tests may be conducted to 

obtain e.g., strain levels in the extreme concrete fibres to investigate safety levels in the elastic 

zone.  

After an initial FE model development, various data types can be collected from critical locations 

obtained from numerical analysis in ambient conditions during normal operations or using special 

known vehicles. Vibration data (such as accelerations) can also be collected from the excited 

structure to calibrate the developed FE model to a reference state of the structure. In railway 

bridges, data from trains can be collected from the wayside monitoring centre during field testing. 

Other ways to collect data may include Bridge Weigh In Motion (BWIM) or Truck performance 

Detectors (TPD)s. For example, wayside data can obtain axle tonnage and accurate spacings as 

well as the speed of the train at the bridge which can be simulated carefully in the FE model to 

further update the model until it reaches a good and acceptable agreement with the field collected 

data. The wayside data should always be reviewed and checked carefully to make sure they are 

consistent with the design and load capacity of the bridge as well as safety and regulatory 

compliances before further work on an SHM plan. These field-collected data can be used to 

initially update an FE model through deterministic or stochastic algorithms [9]. A common way to 

further validate an FE model is to identify and calibrate modal parameters of a bridge using modal 

parameter identification tests (Section 3) and altering structural properties such as Young’s 

modulus, material densities, boundary conditions, members, or FE elements constraints through 

a rigorous sensitivity-based approach or a deterministic or stochastic algorithm until the FE model 

represents the actual structure with a good approximation [10, 11]. Some of the common FE 

model updating methods include Gaussian, Bayesian, and nonlinear methods. When calibrating 

an FE model using modal parameter identification methods, it is strongly recommended mode 

shapes are also extracted to ensure that natural frequency belongs to the same mode of 

vibration. The Modal Assurance Criterion (MAC) is one of the most common methods that can 

be used to determine the similarity of two mode shapes [12]. In the context of FE model updating 

process, the FE model can be validated only once at the beginning, or it can be kept validated 
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during the SHM process while bridge is under various loads. While the former way is more 

common and cost-effective, the latter is more reliable for online SHM of bridges (refer to Section 

6).  

As an example in an FE model updating process; the model updating target may be optimisation 

of 𝑓(𝑢𝑛) as Equation 1:  

 

                      𝑓(𝑢𝑛) = 𝑀𝑖𝑛 |𝑢𝑛−𝐹𝐸−𝑚𝑜𝑑𝑒𝑙 − 𝑢n−field|           (1) 

 

where 𝑓(𝑢𝑛) refers to optimised function of elastic nodal displacement difference in FE and field 

at node,𝑛, through the FE model updating process. The same approach can be developed for 

updating natural frequencies, stresses, strains, temperatures, etc. It should be noted that in many 

cases, FE model updating can be a complex process and may need optimisation algorithms such 

as numerical or data driven based algorithms to improve accuracy. An FE model should always 

be analysed in different noisy and unnoisy conditions (by linking the FE model to a numeric 

computing or programming platform), with model anomalies, material sensitivities, etc. to ensure 

the model can well represent the behavior of the real bridge in different conditions. For simulating 

noise, Signal to Noise Ratios (SNR)s with different intensities may be applied to the theoretical 

FE model outputs before and/or after signal processing to pollute these outputs to simulate real 

data. For FE model updating and validation using acceleration data, Gaussian White Noise 

(GWN) [13] may be used to excite the FE model to obtain modal parameters in the structural free 

vibration zone. These parameters can then be calibrated through modal and transient dynamic 

analysis after comparing and validating them using obtained free acceleration data from the field 

testing [10].      

In the complementary stage and after FE model has reached a good and acceptable agreement 

with field data, and errors are acceptable, the FE model can be used to simulate artificially 

damaged or anomaly scenarios resulting from static or dynamic loading to predict damaged 

structural responses at different locations including where no actual sensor is available. 

For example, a flexural rigidity damage index, 𝐷𝑖, which reflects the level of the beam’s rigidity 

damage can simply be expressed as Equation 2:  

 

                  𝐷𝑖 =
∆(𝐸𝐼)

(𝐸𝐼)0
× 100%              (2) 

 

where ∆(𝐸𝐼) refers to the variation in flexural rigidity between the base and compromised beam’s 

cross-section; and (𝐸𝐼)0 indicates the beam’s undamaged cross section’s initial rigidity.  

These results can finally specify structural safe zones and adopt safety boundaries and 

thresholds. Using this approach, one can track the structural responses and detect damages or 

anomalies due to e.g. a unfavourable change in the structural performance or a structural failure. 
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(a) 

 

(b) 

Figures 2: (a) A flowchart and (b) a simple schematic to adopt a model-based SHM 
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5 Damage Detection, Localisation, and Qualification     

Structural damage is predominantly prone to propagate due to various environmental and 

mechanical factors. The short and long-term damages cause the structures to age and shorten 

the service design life which makes the SM and SHM an important aspect of structures [14]. 

Damage in bridges is defined as a change in the geometric or material characteristics of the 

bridge that adversely affects its performance, safety, reliability, and operational life [15, 16]. 

Damage does not always indicate a complete failure of a bridge or a structural member, yet a 

comparative deterioration of the system functionality causing a suboptimal performance [17, 18]. 

If no remedial action is taken, damage may accumulate until reaching the failure state. The bridge 

may fail gradually or suddenly depending on the type of damage, members’ material, and load 

[19].  

Generally, damage detection, localisation, and qualification techniques are categorized into two 

types:  

• Conventional model-based approaches  

• Modern approaches utilising AI  

The conventional model-based approaches use static data or vibration responses due to 

undamaged and damaged cases to adopt structural safety levels (explained in Section 4).  

Modern approaches, which can be model or non-model-based, include data-driven methods that 

use signal processing and then AI such as machine and deep learning techniques to extract 

Damage Sensitive Features (DSF)s and formulate the relationship between the change of 

structural properties due to damages or anomalies and DSFs to finally diagnose and 

prognosticate damages [20, 21]. 

5.1 Feature Extraction Utilising Machine Learning  

In general, AI techniques allow computer systems to learn the knowledge required for carrying 

out a specific task by analysing enough relevant data samples in a systematic form.   

Machine learning, as a subset of AI, requires data processing in advance to extract certain DSFs 

that represent the most characteristic pieces of information. This important pre-processing step is 

called “Feature Extraction” which is a dimensionality reduction process by which the sizable data 

is reduced to more meaningful groups for further processing [22]. Feature extraction is a key step 

to make sure that the damage detection system is reliable and directly affects the effectiveness 

and accuracy of a fault diagnosis system [23].  

Some of the common DSFs in SHM of bridges include but are not limited to; displacement [24, 

25], natural frequencies and mode shapes [26, 27], modal damping [28, 29], modal curvature [30, 

31], modal strain energy [32, 33], modal flexibility [34, 35], coordinate modal assurance criterion 

[36, 37], frequency response function curvature [12, 38], and energy features in wavelet 

transforms [11, 39]. It should be noted that there are many advantages and disadvantages to the 

above-mentioned DSFs. Some DSFs are only sensitive to global failures rather than localised 

failures in complex structures (e.g., natural frequencies). This can limit their applications in a real 

practical SHM. Some other DSFs may widely be affected by noise or environmental factors which 

also limit their applications to only numerical, experimental, or laboratory samples. To tackle this, 

recently some practical DSFs have been developed as a combination of a couple or more DSFs 

to increase the accuracy and effectiveness of damage detection [11]. Novel DSFs can also be 

developed and extracted from bridge data for adopting proper safety boundaries. It is strongly 

recommended that DSFs are well-investigated, verified and validated before utilising them for a 
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real bridge to avoid misperception of results and the design of ineffective safety thresholds and 

boundaries in ongoing SHMs.  

Machine learning mainly requires complicated signal processing or complex structural 

engineering knowledge before using the application to manually extract proper hand-crafted 

DSF(s). In recent years, deep learning techniques, as a part of the broader family of machine 

learning, have proven to be more effective in the practical SHM of railway bridges [10, 40, 41]. 

Deep learning does not require a user to manually select a highly sensitive feature to damages or 

anomalies as the input, i.e. it can select and process DSFs through its complex nonlinear layers 

[42, 43]. Although deep learning is more effective in most cases than traditional machine learning 

techniques i.e., it uses complex nonlinear data-driven techniques that can practically be effective 

in both complicated data and image processing; the decision to select an AI technique in an SHM 

depends on the obtained data, simplicity of DSFs, specific expertise of SHM experts, and SHM 

problem to be resolved.  

It should be noted that damage detection using AI needs to be performed stage-by-stage rather 

than hypothetically designed for complex bridges or a group of bridges. In many cases, the 

detection, localisation, or qualification of damages such as surface cracks, minor deformations, 

cross-section losses, or even local failures in complex bridges may be challenging using available 

AI techniques; therefore, it is necessary to clarify the SHM’s target and set expectations from AI 

techniques rather than overcommitment from the beginning.     

5.2 Types of Machine Learning or Deep Learning SHMs   

The outcomes of machine learning or deep learning SHM can be one of the following:   

1. Classification: A classifier SHM can be designed to determine which category the data 

belongs to e.g., whether the data is healthy or anomaly. As an example, such SHM can 

be used to comply with safety and regularity management systems such as 

distinguishment between defect categories and required action according to AS7636 

[10, 11]. 

2. Regression: The goal here is to model the relationship between the inputs and outputs. 

The only difference between regression and classification is the format of the outputs. 

As an example, an ongoing regression SHM can be designed to adopt safety or alarm 

levels when e.g., displacements or strains are excessive, or real-time data are not within 

the safe boundaries.  

3. Prediction: Prediction is a special type of regression in which the objective is to foresee 

the future values of a given time. A predictor SHM can be designed to predict the 

magnitudes of new data if train operations alter in the future.   

4. Clustering: The target of clustering is to divide the input dataset into clusters with similar 

examples [44]. Unlike classification, regression, and prediction tasks which are 

performed using supervised methods, clustering is conducted in an unsupervised 

manner such as self-organizing maps [22].  

Figure 3 shows AI, machine learning, and deep learning and their subsets. 

The developed machine learning and deep learning SHM can completely be model-based, non-

model-based, or a combination approach depending on the field data and SHM problem. When 

the FE model is developed, the model should be analysed with different noisy and unnoisy 

conditions, model anomalies, material sensitivities, etc. to ensure the model can well represent 

the real bridge’s behavior in different conditions.   
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Figure 4 illustrates a schematic of an SHM classification problem (case 1 above) that can be 

resolved utilising machine learning and deep learning algorithms.  

 

Figure 3: AI and its subsets 

 

 

Figure 4: An SHM classification problem using (a) machine learning and (b) deep learning 
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6 Possible Future Innovations   

Possible future innovations in the field of SHM of bridges are discussed generally in this section. 

Although past sections of this document can practically be implemented for a specific case 

without any requirements; the context explained in this section will require future developments in 

all five pillars of SHM (explained in Section 2) depending on the overall future decision-making 

outlook in the field of asset (including bridges) management.  

6.1 Ideal Hybrid SHM of Railway Bridges  

Designing a comprehensive SHM system, which can correctly identify all the structural failures in 

different types of bridge structures has not yet been proposed. To increase the practicality and 

effectiveness of SHM of bridges, some SHM experts have proposed hybrid SHM (Figure 5). A 

hybrid SHM is an ideal decision-making system which tries to assess the health state of the 

bridges by merging different types of information or data, which can come from multiple sources 

(e.g. data from track, train, and bridge) and of different types (e.g. ongoing processed data, 

inspection, maintenance records and measurements of the track quality, etc.) [45]. This ideal 

SHM will not successfully be fulfilled unless there is a real-time processing database between all 

the track and civil disciplines that can monitor and update the bridge conditions anytime.   

      

 

Figure 5: A schematic to an ideal hybrid SHM of railway bridges  

6.2 Digital Twin Lifecycle Management Tool  

Within the context of designing innovative SHMs in the future and in the absence of ideal hybrid 

models, enabling a Digital Twin (DT) perspective for important bridges can be crucial for safety 

and operative reasons to allow for optimised condition-based and predictive maintenance 

practices, inspection, and management planning throughout bridge’s lifecycle health [46]. Building 

Information Modelling (BIM) has been playing a pivotal role in bringing systematic changes in 

https://www.sciencedirect.com/topics/engineering/building-information-modeling
https://www.sciencedirect.com/topics/engineering/pivotal-role


Structural Health Monitoring of Bridges 

ETG-09-04 

Possible Future Innovations 

This document is uncontrolled when printed. Version Number: 1.0 Date Reviewed: 05 Apr 24 Page 19 of 24 

 

bridge engineering. When BIM merges into the DT technology and applies from the construction 

phase to the operation and maintenance phases, it has a great potential to shape a DT-enhanced 

BIM framework to fully enable whole digital lifecycle of bridges [47].   

DT technologies for the management of the bridge lifecycle have been rapidly growing in recent 

years and will be a promising alternative to the current bridge maintenance tools (static 

conventional Bridge Management System, BMS) soon [48, 49, 50]. The following framework can 

be outlined to apply the DT-enhanced BIM framework concept to bridge lifecycle management. 

Not all this information needs to be available before building such a framework, however, the 

information can gradually be fed into the tool during the time and in a planned and systematic 

manner. 

1. A 3D geometry model (DT model) based on the as-built drawings of the existing bridge. 

This DT model includes the following information but is not limited to: 

a. A reverse 3D-surface model with the bridge’s status (reality twin 

model) which is created through the 3D scanning procedure, a 

combination of scanned photos using e.g., UAV of the lateral and top 

surface models and laser scanning cloud data for the bottom surface 

model.   

b. An FE model developed using a standard FE package and updated 

using deterministic and/or stochastic algorithms (the same FE 

package is preferable to be used for all the SHMs for future 

integration of all the separate SHMs and ease of coding).        

2. Image processing and image tracing technology (raster-to-vector conversion) for 

automating existing and future inspection reports.    

3. The required upgrade, repair, or strengthening work is specified and completed, and all 

archived data right after repair work is imported into the management tool. 

4. Environmental data, including temperature, humidity history, etc. to include in the tool.  

5. Current and historical loading and speeds from vehicles, any speed restriction and 

accident history, etc. for predicting the consequent performance of the structural 

member.  

6. Bridge analytical results, members, damages, as-is conditions, etc. (using FE model) 

are updated and reported based on numerical or data-driven algorithms (refer to 

Sections 4 and 5).  

The general procedure for this DT-enhanced BIM management tool is a closed loop of interactive 

processes. This means that this process is continuously repeated and updated throughout the 

service life of the bridge. 

Figure 6 shows a simple illustration of the above-explained closed-loop.    

 

https://www.sciencedirect.com/topics/engineering/operation-and-maintenance
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Figure 6: A simple illustration of a closed-loop DT-enhanced BIM management tool 
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